Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Xing Gao, Guo Tang* and Yu-Fen Zhao

Department of Chemistry, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: t12g21@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.150 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1*R*,4*R*)-1-(Hydroxydiphenylmethyl)-7,7-dimethylbicyclo[2.2.1]heptan-2-one

The title compound, $C_{22}H_{24}O_2$, has been obtained by a Grignard reaction of (1S,4R)-methyl 7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carboxylate with phenylmagnesium bromide. Intramolecular hydrogen bonding is observed between the carbonyl group and the hydroxy group.

Received 13 September 2006 Accepted 13 September 2006

Comment

The title compound, (I), is an important intermediate in the synthesis of *exo*-10,10-diphenyl-2,10-camphanediol, which is widely used in asymmetric reduction as a chiral auxiliary (Chen *et al.*, 1999). The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are in agreement with those reported for similar compounds (Chen *et al.*, 2006). The dihedral angle between the phenyl planes is 72.10 (6)°.

Intramolecular hydrogen bonding is observed between carbonyl groups and hydroxy groups; O2-H2A = 0.82 Å, $H2A \cdots O1 = 2.02$ Å, $O2 \cdots O1 = 2.722$ (3) Å and $O2-H2A \cdots O1 = 143^{\circ}$.

Experimental

To a precooled solution of (1S,4R)-methyl 7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1-carboxylate (0.78 g, 4 mmol) in dry tetrahydrofuran (30 ml) at 273 K was added dropwise a 3 *M* solution of phenylmagnesium bromide (6.8 ml, 20 mmol) in tetrahydrofuran. The cooling bath was removed and the mixture warmed to 308 K for 10 h. The reaction was quenched with a saturated NH₄Cl solution (16 ml) and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO₄, concentrated under vacuum and the crude product was purified by column chromatography (petroleum ether–ethyl acetate, 30:1) to give the title compound as a white solid in 58% yield. Single crystals of (I) were obtained by slow evaporation of a petroleum ether–ethyl acetate solution (15:1 ν/ν).

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $\begin{array}{l} C_{22}H_{24}O_2\\ M_r = 320.41\\ Orthorhombic, P2_12_12_1\\ a = 9.168 \ (2) \ \text{\AA}\\ b = 10.053 \ (2) \ \text{\AA}\\ c = 18.405 \ (4) \ \text{\AA}\\ V = 1696.3 \ (6) \ \text{\AA}^3 \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: none 9220 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.150$ S = 1.191912 reflections 217 parameters H-atom parameters constrained Z = 4 D_x = 1.255 Mg m⁻³ Mo K α radiation μ = 0.08 mm⁻¹ T = 273 (2) K Chunk, colorless 0.65 × 0.56 × 0.41 mm

1912 independent reflections 1848 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$ $\theta_{\text{max}} = 26.0^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0967P)^{2} + 0.1778P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in idealized positions, with C–H = 0.93 (aromatic), 0.98 (methine), 0.97 Å (methylene) and O–H = 0.82 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration of (I) was assigned assuming that the absolute configuration of the starting material was retained during the synthesis.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Key (Key grant) Project of the Chinese Ministry of Education (No. 104201) and the Natural Science Foundation of Fujian Province of China (No.

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

C0310002) for supporting this work. We also thank Mr R.-B. Huang for technical assistance.

References

Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, C.-J., Chu, Y.-Y., Liao, Y.-Y., Tsai, Z.-H., Wang, C.-C. & Chen, K. (1999). Tetrahedron Lett. 40, 1141–1144.

- Chen, W.-Z., Zeng, Q.-L., Fang, H., Gao, Y.-X. & Zhao, Y.-F. (2006). Acta Cryst. E62, 0869–0870.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.